2 research outputs found

    Periodically Disturbed Oscillators

    Get PDF
    By controlling the timing of events and enabling the transmission of data over long distances, oscillators can be considered to generate the "heartbeat" of modern electronic systems. Their utility, however, is boosted significantly by their peculiar ability to synchronize to external signals that are themselves periodic in time. Although this fascinating phenomenon has been studied by scientists since the 1600s, models for describing this behavior have seen a disconnect between the rigorous, methodical approaches taken by mathematicians and the design-oriented, physically-based analyses carried out by engineers. While the analytical power of the former is often concealed by an inundation of abstract mathematical machinery, the accuracy and generality of the latter are constrained by the empirical nature of the ensuing derivations. We hope to bridge that gap here. In this thesis, a general theory of electrical oscillators under the influence of a periodic injection is developed from first principles. Our approach leads to a fundamental yet intuitive understanding of the process by which oscillators lock to a periodic injection, as well as what happens when synchronization fails and the oscillator is instead injection pulled. By considering the autonomous and periodically time-varying nature that underlies all oscillators, we build a time-synchronous model that is valid for oscillators of any topology and periodic disturbances of any shape. A single first-order differential equation is shown to be capable of making accurate, quantitative predictions about a wide array of properties of periodically disturbed oscillators: the range of injection frequencies for which synchronization occurs, the phase difference between the injection and the oscillator under lock, stable vs. unstable modes of locking, the pull-in process toward lock, the dynamics of injection pulling, as well as phase noise in both free-running and injection-locked oscillators. The framework also naturally accommodates superharmonic injection-locked frequency division, subharmonic injection-locked frequency multiplication, and the general case of an arbitrary rational relationship between the injection and oscillation frequencies. A number of novel insights for improving the performance of systems that utilize injection locking are also elucidated. In particular, we explore how both the injection waveform and the oscillator's design can be modified to optimize the lock range. The resultant design techniques are employed in the implementation of a dual-moduli prescaler for frequency synthesis applications which features low power consumption, a wide operating range, and a small chip area. For the commonly used inductor-capacitor (LC) oscillator, we make a simple modification to our framework that takes the oscillation amplitude into account, greatly enhancing the model's accuracy for large injections. The augmented theory uniquely captures the asymmetry of the lock range as well as the distinct characteristics exhibited by different types of LC oscillators. Existing injection locking and pulling theories in the available literature are subsumed as special cases of our model. It is important to note that even though the veracity of our theoretical predictions degrades as the size of the injection grows due to our framework's linearization with respect to the disturbance, our model's validity across a broad range of practical injection strengths are borne out by simulations and measurements on a diverse collection of integrated LC, ring, and relaxation oscillators. Lastly, we also present a phasor-based analysis of LC and ring oscillators which yields a novel perspective into how the injection current interacts with the oscillator's core nonlinearity to facilitate injection locking.</p

    Mathematical Modeling of Electronic Systems: From Oscillators to Multipliers

    Get PDF
    The ubiquity of electronics in modern technology is undeniable. Although it is not feasible to design or analyze circuits in an exhaustively detailed fashion, it is still imperative that circuit design engineers understand the pertinent physical tradeoffs and are able to think at the appropriate level of mathematical abstraction. This thesis presents several mathematical modeling techniques of common electronic systems. First, we derive, ab initio, a general analytical model for the behavior of electrical oscillators under injection without making any assumptions about the type of oscillator or the size or shape of the injection. This model provides novel insights into the phenomena of injection locking and pulling while subsuming existing theories found in the literature. Next, we focus on the familiar scenario of an inductor-capacitor (LC) oscillator locked to a sinusoidal signal. An exact analysis of this circuit is carried out for an arbitrary injection strength and frequency, a task which has not been executed to fruition in the existing literature. This analysis intuitively illuminates the fundamental physics underlying the synchronization of electrical harmonic oscillators, and it generalizes the notion of the lock range for such oscillators into separate necessary and sufficient conditions. We then turn to the classical estimate of the bandwidth of a linear time-invariant (LTI) system via the sum of its zero-value time constants (ZVTs), and we show that this sum can actually be used to tightly bound the bandwidth—both from above and from below—in addition to simply estimating it. Finally, we look at a natural generalization of the Gilbert cell topology: an analog multiplier for an arbitrary number of inputs; we then analyze its large- and small-signal characteristics as well as its frequency response. Throughout, we will demonstrate how infusing physical intuition with mathematical rigor whilst seeking a balance between detailed analysis and abstract modularity results in models that are conceptually insightful, sufficiently accurate, and computationally feasible.</p
    corecore